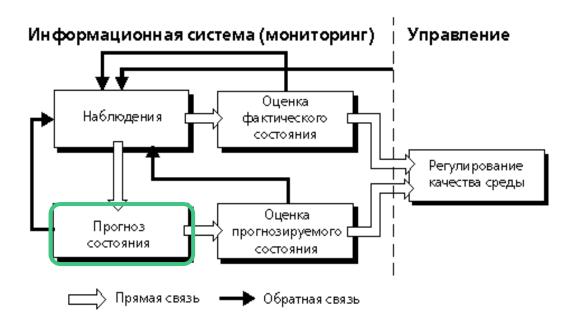
ЭЛЕМЕНТЫ ПРОГНОЗИРОВАНИЯ ДИНАМИКИ КАЧЕСТВА РЕЧНЫХ ВОД

О.С. Решетняк,

доцент, Институт наук о Земле Южного федерального университета, г. Ростов-на-Дону; с.н.с. ФГБУ «Гидрохимический институт», Ростов-на-Дону


Прогноз качества воды и устойчивое развитие

- Приоритетные задачи: оценка состояния водных ресурсов, качества воды и экологического состояния водных экосистем, а также прогноз качества воды.
- Качество воды имеет определяющее значение для устойчивого экологического развития территории (прогноз количества и качества водных ресурсов).
- Прогнозирование позволяет определить будущий тренд изменчивости качества речных вод, что особенно актуально для оценки качества воды в условиях маловодных периодов в режимах отдельных рек и при изменениях условий водопользования в речном бассейне.

Прогнозирование в системе экологического мониторинга

В системе экологического мониторинга прогнозирование занимает важнейшее место, являясь основным звеном в системе оценки будущего состояния экосистем.

Методы прогнозирования качества поверхностных вод

Статистические методы и моделирование

Элементарные методы экстраполяции:

- среднего абсолютного прироста,
- среднего темпа прироста,
- экстраполяция на основе выравнивания рядов по какой-либо аналитической формуле.

Регрессионные методы для моделирования и прогноза качества воды:

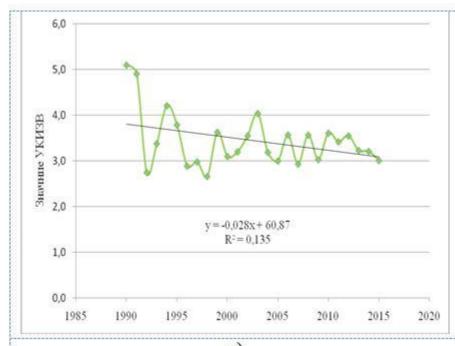
- методы авторегрессионного анализа,
- множественного регрессионного и факторного анализа,
- метод группового учета аргументов.

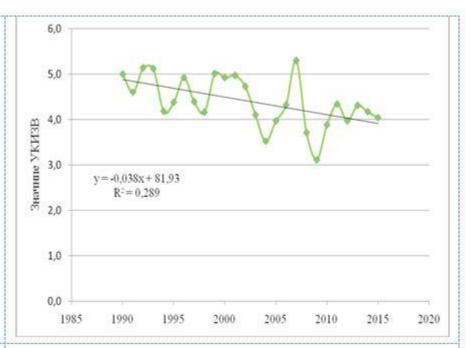
Наиболее простой метод – это построение уравнений регрессии (прогнозные модели).

Прогнозная модель может быть построена на расчетах смешения и/или разбавления сточных вод, на основании одного-двух параметров, описывающих процессы трансформации веществ (классические уравнения Стритера-Фелпса).

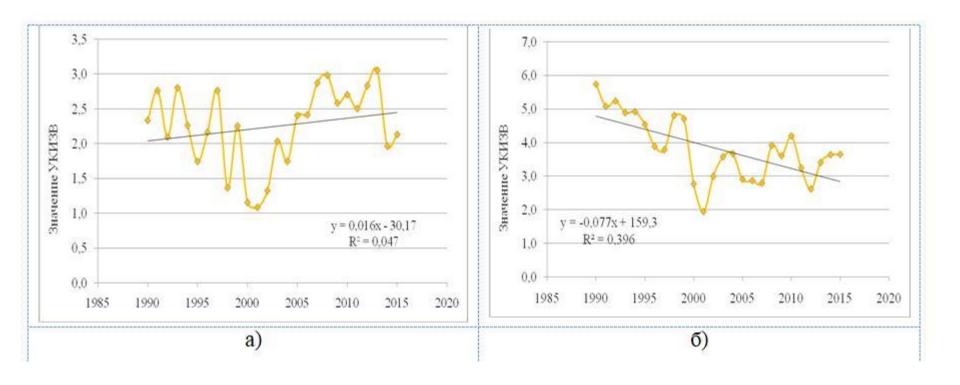
Прогноз динамики качества поверхностных вод по тенденции изменчивости УКИЗВ

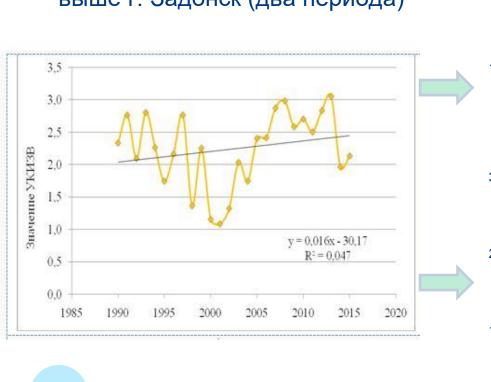
Материалы исследования многолетняя гидрохимическая информация (значения УКИЗВ) за период 1990-2015 гг.

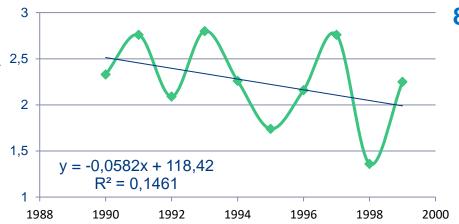

Объекты исследования

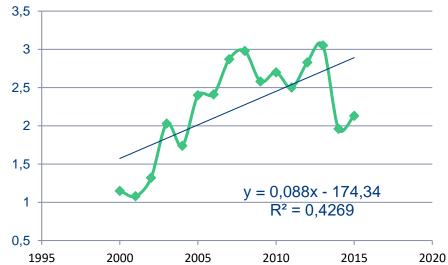

- участки р.Ока: в районе г.Орёл и г. Горбатов;
- участки р. Дон: выше г. Задонск и в черте ст-цы Раздорская.

Тренды изменения значений УКИЗВ на участках реки Ока: а – ниже г. Орёл, б – г. Горбатов








Тренды изменения значений УКИЗВ на участках реки Дон: а – выше г. Задонск, б – в черте ст-цы Раздорская

Уравнения регрессии (прогнозные модели) и прогнозные значения УКИЗВ для участков рек Ока и Дон

Davis	Vnonvovvo narnagovy (B2)	Значение УКИЗВ		
Река – пункт наблюдений	Уравнение регрессии (R ²)	2021 г.	2023 г.	2030 г.
р. Ока – ниже г. Орел	$y = -0.028 \cdot x + 60.87 (0.14)$	4,28	4,27	4,03
р. Ока – г. Горбатов	$y = -0.038 \cdot x + 81.93 (0.29)$	5,13	5,06	4,79
р. Дон – выше г. Задонск	$y = 0.016 \cdot x - 30.17 (0.05)$	2,17	2,20	2,31
р. Дон – ст. Раздорская	$y = -0.077 \cdot x + 159.3 (0.40)$	3,68	3,53	2,99

д Примечание: цветовое обозначение класса качества воды (ККВ):

<u> </u>	3-й ККВ (разряды «А» и «Б») – «загрязненная» и «очень загрязненная»			
	4-й ККВ (разряды «А» и «Б») – «грязная»			

Сопоставление прогнозных и реальных значений УКИЗВ для отдельных участков рек Ока и Дон

Река – пункт наблюдений	Реальное значение УКИЗВ в		Прогноз по уравнению на 2019 г.		Прогноз по уравнению на 2021 г.	
	2019 г.	2021 г.	значение	отклонение, %	значение	отклонение, %
р. Ока – ниже г. Орел	3,43	2,98	4,34	+21,0	4,28	+30,4
р. Ока – г. Горбатов	3,63	4,12	5,21	+30,3	5,13	+19,7
р. Дон – выше г. Задонск	1,29	1,53	2,13	+38,9	2,17	+29,5
р. Дон – ст. Раздорская	3,80	3,81	3,84	+1,0	3,68	+3,5

Примечание: цветом выделен приемлемый прогноз значения УКИЗВ для прогнозирования качества воды.

Заключение

- Прогнозирование качества воды трудная задача, которая базируется на использовании математических моделей разной сложности.
- Надежность прогнозирования будет зависеть от комплексности и надежности систем наблюдений, полноты и достоверности информации, используемой для прогноза качества воды, квалификации специалиста и др. факторов, а также от правильно подобранной модели прогноза качества воды.
- > Теоретические прогнозные модели качества воды для эффективного применения на практике требуют проведение сложных экспериментальных работ по апробации и верификации.
- Р Прогнозирование динамики качества речных вод в современных условиях антропогенного воздействия является важной составляющей системы мониторинга состояния и загрязнения водных объектов, а также может быть использовано при разработке и оценке эффективности природоохранных мероприятий на водосборной территории.

Контактная информация:

olgare 1 @mail.ru, osreshetnyak @sfedu.ru

